Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.539
Filtrar
1.
Sci Rep ; 14(1): 8731, 2024 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627587

RESUMO

Early diagnosis of lung cancer (LC) can significantly reduce its mortality rate. Considering the limitations of the high false positive rate and reliance on radiologists' experience in computed tomography (CT)-based diagnosis, a multi-modal early LC screening model that combines radiology with other non-invasive, rapid detection methods is warranted. A high-resolution, multi-modal, and low-differentiation LC screening strategy named ensemble text and breath analysis (ETBA) is proposed that ensembles radiology report text analysis and breath analysis. In total, 231 samples (140 LC patients and 91 benign lesions [BL] patients) were screened using proton transfer reaction-time of flight-mass spectrometry and CT screening. Participants were randomly assigned to a training set and a validation set (4:1) with stratification. The report section of the radiology reports was used to train a text analysis (TA) model with a natural language processing algorithm. Twenty-two volatile organic compounds (VOCs) in the exhaled breath and the prediction results of the TA model were used as predictors to develop the ETBA model using an extreme gradient boosting algorithm. A breath analysis model was developed based on the 22 VOCs. The BA and TA models were compared with the ETBA model. The ETBA model achieved a sensitivity of 94.3%, a specificity of 77.3%, and an accuracy of 87.7% with the validation set. The radiologist diagnosis performance with the validation set had a sensitivity of 74.3%, a specificity of 59.1%, and an accuracy of 68.1%. High sensitivity and specificity were obtained by the ETBA model compared with radiologist diagnosis. The ETBA model has the potential to provide sensitivity and specificity in CT screening of LC. This approach is rapid, non-invasive, multi-dimensional, and accurate for LC and BL diagnosis.


Assuntos
Neoplasias Pulmonares , Compostos Orgânicos Voláteis , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Estudos Retrospectivos , Sensibilidade e Especificidade , Compostos Orgânicos Voláteis/análise , Algoritmos , Testes Respiratórios/métodos
2.
J Breath Res ; 18(3)2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38547532

RESUMO

We explored appropriate technical setups for the detection of volatile organic compounds (VOCs) from exhaled cow breath by comparing six different polymer-based solid-phase extraction (SPE) cartridges currently on the market for gas chromatography/mass spectrometry (GC-MS) screening. Exhaled breath was sampled at a single timepoint from five lactating dairy cows using six different SPE cartridges (Bond Elut ENV (ENV); Chromabond HRX (HRX); Chromabond HRP (HRP); Chromabond HLB (HLB); Chromabond HR-XCW (XCW) and Chromabond HR-XAW (XAW)). The trapped VOCs were analyzed by dynamic headspace vacuum in-tube extraction GC-MS (DHS-V-ITEX-GC-MS). Depending on the SPE cartridge, we detected 1174-1312 VOCs per cartridge. Most VOCs were alkenes, alkanes, esters, ketones, alcohols, aldehydes, amines, nitriles, ethers, amides, carboxylic acids, alkynes, azoles, terpenes, pyridines, or sulfur-containing compounds. The six SPE cartridges differed in their specificity for the chemical compounds, with the XAW cartridge showing the best specificity for ketones. The greatest differences between the tested SPE cartridges appeared in the detection of specific VOCs. In total, 176 different VOCs were detected with a match factor >80%. The greatest number of specific VOCs was captured by XAW (149), followed by ENV (118), HLB (117), HRP (115), HRX (114), and XCW (114). We conclude that the tested SPE cartridges are suitable for VOC sampling from exhaled cow breath, but the SPE cartridge choice enormously affects the detected chemical groups and the number of detected VOCs. Therefore, an appropriate SPE adsorbent cartridge should be selected according to our proposed inclusion criteria. For targeted metabolomics approaches, the SPE cartridge choice depends on the VOCs or chemical compound groups of interest based on our provided VOC list. For untargeted approaches without information on the animals' metabolic condition, we suggest using multi-sorbent SPE cartridges or multiple cartridges per animal.


Assuntos
Compostos Orgânicos Voláteis , Feminino , Animais , Bovinos , Compostos Orgânicos Voláteis/análise , Lactação , Testes Respiratórios/métodos , Extração em Fase Sólida , Cromatografia Gasosa-Espectrometria de Massas/métodos , Cetonas
3.
Anal Chim Acta ; 1301: 342468, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38553125

RESUMO

BACKGROUND: Acetone, isoprene, and other volatile organic compounds (VOCs) in exhaled breath have been shown to be biomarkers for many medical conditions. Researchers use different techniques for VOC detection, including solid phase microextraction (SPME), to preconcentrate volatile analytes prior to instrumental analysis by gas chromatography-mass spectrometry (GC-MS). These techniques include a previously developed method to detect VOCs in breath directly using SPME, but it is uncommon for studies to quantify exhaled volatiles because it can be time consuming due to the need of many external/internal standards, and there is no standardized or widely accepted method. The objective of this study was to develop an accessible method to quantify acetone and isoprene in breath by SPME GC-MS. RESULTS: A system was developed to mimic human exhalation and expose VOCs to a SPME fiber in the gas phase at known concentrations. VOCs were bubbled/diluted with dry air at a fixed flow rate, duration, and volume that was comparable to a previously developed breath sampling method. Identification of acetone and isoprene through GC-MS was verified using standards and observing overlaps in chromatographic retention/mass spectral fragmentation. Calibration curves were developed for these two analytes, which showed a high degree of linear correlation. Acetone and isoprene displayed limits of detection/quantification equal to 12 ppb/37 ppb and 73 ppb/222 ppb respectively. Quantification results in healthy breath samples (n = 15) showed acetone concentrations spanned between 71 ppb and 294 ppb, and isoprene varied between 170 ppb and 990 ppb. Both concentration ranges for acetone and isoprene in this study overlap with those reported in existing literature. SIGNIFICANCE: Results indicate the development of a system to quantify acetone and isoprene in breath that can be adapted to diverse sampling methods and instrumental analyses beyond SPME GC-MS.


Assuntos
Butadienos , Hemiterpenos , Microextração em Fase Sólida , Compostos Orgânicos Voláteis , Humanos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Microextração em Fase Sólida/métodos , Acetona/análise , Expiração , Testes Respiratórios/métodos , Compostos Orgânicos Voláteis/análise
4.
J Breath Res ; 18(2)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38467063

RESUMO

Volatilomics is a powerful tool capable of providing novel biomarkers for the diagnosis of gastric cancer. The main objective of this study was to characterize the volatilomic signatures of gastric juice in order to identify potential alterations induced by gastric cancer. Gas chromatography with mass spectrometric detection, coupled with headspace solid phase microextraction as the pre-concentration technique, was used to identify volatile organic compounds (VOCs) released by gastric juice samples collected from 78 gastric cancer patients and two cohorts of controls (80 and 96 subjects) from four different locations (Latvia, Ukraine, Brazil, and Colombia). 1440 distinct compounds were identified in samples obtained from patients and 1422 in samples provided by controls. However, only 6% of the VOCs exhibited an incidence higher than 20%. Amongst the volatiles emitted, 18 showed differences in their headspace concentrations above gastric juice of cancer patients and controls. Ten of these (1-propanol, 2,3-butanedione, 2-pentanone, benzeneacetaldehyde, 3-methylbutanal, butylated hydroxytoluene, 2-pentyl-furan, 2-ethylhexanal, 2-methylpropanal and phenol) appeared at significantly higher levels in the headspace of the gastric juice samples obtained from patients; whereas, eight species showed lower abundance in patients than found in controls. Given that the difference in the volatilomic signatures can be explained by cancer-related changes in the activity of certain enzymes or pathways, the former set can be considered potential biomarkers for gastric cancer, which may assist in developing non-invasive breath tests for the diagnosis of this disease. Further studies are required to elucidate further the mechanisms that underlie the changes in the volatilomic profile as a result of gastric cancer.


Assuntos
Neoplasias Gástricas , Compostos Orgânicos Voláteis , Humanos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Testes Respiratórios/métodos , Biomarcadores/análise , Compostos Orgânicos Voláteis/análise , Microextração em Fase Sólida/métodos , Suco Gástrico/metabolismo
5.
ACS Sens ; 9(3): 1575-1583, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38483350

RESUMO

Monitoring of isoprene in exhaled breath is expected to provide a noninvasive and painless method for dynamic monitoring of physiological and metabolic states during exercise. However, for real-time and portable detection of isoprene, gas sensors have become the best choice for gas detection technology, which are crucial to achieving the goal of anytime, anywhere, human-centered healthcare in the future. Here, we first report a mixed potential type isoprene sensor based on a Gd2Zr2O7 solid electrolyte and a CdSb2O6 sensing electrode, which enables sensitive detection for isoprene with sensitivities of -21.2 mV/ppm and -65.8 mV/decade in the range of 0.05-1 and 1-100 ppm. The sensing behavior of the sensor follows the mixed potential sensing mechanism and was further verified by the electrochemical polarization curves. The significant differentiation between the sensor response to exhaled breath of healthy individuals and simulated breath containing different concentrations of isoprene demonstrates the potential of the sensor for the detection of isoprene in exhaled breath. Simultaneously, monitoring of isoprene during exercise signifies the feasibility of the sensor in dynamic monitoring of physiological indicators, which is not only of great significance for optimizing training and guiding therapeutic exercise intervention in sporting scenarios but also expected to help further reveal the interaction between exercise, muscle, and organ metabolism in medicine.


Assuntos
Testes Respiratórios , Gases , Hemiterpenos , Humanos , Testes Respiratórios/métodos , Butadienos , Biomarcadores
6.
Rapid Commun Mass Spectrom ; 38(10): e9737, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38533583

RESUMO

RATIONALE: Human exhaled breath usually contains unique proteins that may provide clues to characterize individual physiological activities and many diseases. However, the concentration of exhaled proteins in exhaled breath is extremely low and usually does not reach the detection limits of all online breath mass spectrometry instruments. Therefore, developing a new breath sampler for collecting and characterizing exhaled proteins is important. METHODS: In this study, a new mask-based wearable sampler was developed by fixing metal materials into the inner surface of the KN95 mask. Human exhaled proteins could be directly adsorbed onto the metal material while wearing the mask. After sampling, the collected proteins were eluted, digested, and identified using nano-liquid chromatography-tandem mass spectrometry (nano-LC-MS/MS). RESULTS: The adsorption of exhaled proteins was evaluated, showing that modified gold foil is an effective material for collecting exhaled proteins. Various endogenous proteins were successfully identified from exhaled breath, many of which can be potential biomarkers for disease diagnosis. CONCLUSIONS: By coupling the newly developed mask sampler with nano-LC-MS/MS, human exhaled proteins were successfully collected and identified. Our results show that the mask sampler is wearable, simple, and convenient, and the method is noninvasive for investigating disease diagnosis and human health.


Assuntos
Espectrometria de Massas em Tandem , Dispositivos Eletrônicos Vestíveis , Humanos , Espectrometria de Massas em Tandem/métodos , Projetos Piloto , Testes Respiratórios/métodos , Cromatografia Líquida/métodos , Aerossóis
7.
J Breath Res ; 18(2)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38502958

RESUMO

Clostridioides difficileinfection (CDI) is the leading cause of hospital-acquired infective diarrhea. Current methods for diagnosing CDI have limitations; enzyme immunoassays for toxin have low sensitivity andClostridioides difficilepolymerase chain reaction cannot differentiate infection from colonization. An ideal diagnostic test that incorporates microbial factors, host factors, and host-microbe interaction might characterize true infection. Assessing volatile organic compounds (VOCs) in exhaled breath may be a useful test for identifying CDI. To identify a wide selection of VOCs in exhaled breath, we used thermal desorption-gas chromatography-mass spectrometry to study breath samples from 17 patients with CDI. Age- and sex-matched patients with diarrhea and negativeC.difficiletesting (no CDI) were used as controls. Of the 65 VOCs tested, 9 were used to build a quadratic discriminant model that showed a final cross-validated accuracy of 74%, a sensitivity of 71%, a specificity of 76%, and a receiver operating characteristic area under the curve of 0.72. If these findings are proven by larger studies, breath VOC analysis may be a helpful adjunctive diagnostic test for CDI.


Assuntos
Compostos Orgânicos Voláteis , Humanos , Compostos Orgânicos Voláteis/análise , Testes Respiratórios/métodos , Cromatografia Gasosa-Espectrometria de Massas , Curva ROC , Diarreia
8.
World J Gastroenterol ; 30(6): 579-598, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38463019

RESUMO

BACKGROUND: Helicobacter pylori (H. pylori) infection has been well-established as a significant risk factor for several gastrointestinal disorders. The urea breath test (UBT) has emerged as a leading non-invasive method for detecting H. pylori. Despite numerous studies confirming its substantial accuracy, the reliability of UBT results is often compromised by inherent limitations. These findings underscore the need for a rigorous statistical synthesis to clarify and reconcile the diagnostic accuracy of the UBT for the diagnosis of H. pylori infection. AIM: To determine and compare the diagnostic accuracy of 13C-UBT and 14C-UBT for H. pylori infection in adult patients with dyspepsia. METHODS: We conducted an independent search of the PubMed/MEDLINE, EMBASE, and Cochrane Central databases until April 2022. Our search included diagnostic accuracy studies that evaluated at least one of the index tests (13C-UBT or 14C-UBT) against a reference standard. We used the QUADAS-2 tool to assess the methodological quality of the studies. We utilized the bivariate random-effects model to calculate sensitivity, specificity, positive and negative test likelihood ratios (LR+ and LR-), as well as the diagnostic odds ratio (DOR), and their 95% confidence intervals. We conducted subgroup analyses based on urea dosing, time after urea administration, and assessment technique. To investigate a possible threshold effect, we conducted Spearman correlation analysis, and we generated summary receiver operating characteristic (SROC) curves to assess heterogeneity. Finally, we visually inspected a funnel plot and used Egger's test to evaluate publication bias. RESULTS: The titles and abstracts of 4621 studies were screened; 79 articles were retrieved and selected for full-text reading. Finally, 60 studies were included in the diagnostic test accuracy meta-analysis. Our analysis demonstrates superior diagnostic accuracy of 13C-UBT over 14C-UBT, indicated by higher sensitivity (96.60% vs 96.15%), specificity (96.93% vs 89.84%), likelihood ratios (LR+ 22.00 vs 10.10; LR- 0.05 vs 0.06), and area under the curve (AUC; 0.979 vs 0.968). Notably, 13C-UBT's DOR (586.47) significantly outperforms 14C-UBT (DOR 226.50), making it the preferred diagnostic tool for dyspeptic individuals with H. pylori infection. Correlation analysis revealed no threshold effect (13C-UBT: r = 0.48; 14C-UBT: r = -0.01), and SROC curves showed consistent accuracy. Both 13C-UBT and 14C-UBT showed high AUC values (13C-UBT 0.979; 14C-UBT 0.968) near 1.00, reinforcing their excellent accuracy and endorsing both as reliable diagnostic tools in clinical practice. CONCLUSION: In summary, our study has demonstrated that 13C-UBT has been found to outperform the 14C-UBT, making it the preferred diagnostic approach. Additionally, our results emphasize the significance of carefully considering urea dosage, assessment timing, and measurement techniques for both tests to enhance diagnostic precision. Nevertheless, it is crucial for researchers and clinicians to evaluate the strengths and limitations of our findings before implementing them in practice.


Assuntos
Infecções por Helicobacter , Helicobacter pylori , Adulto , Humanos , Infecções por Helicobacter/diagnóstico , Ureia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Testes Respiratórios/métodos , Testes Diagnósticos de Rotina
9.
Commun Biol ; 7(1): 258, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431745

RESUMO

Breath analysis offers tremendous potential for diagnostic approaches, since it allows for easy and non-invasive sample collection. "Breathomics" as one major research field comprehensively analyses the metabolomic profile of exhaled breath providing insights into various (patho)physiological processes. Recent research, however, primarily focuses on volatile compounds. This is the first study that evaluates the non-volatile organic compounds (nVOCs) in breath following an untargeted metabolomic approach. Herein, we developed an innovative method utilizing a filter-based device for metabolite extraction. Breath samples of 101 healthy volunteers (female n = 50) were analysed using DI-FT-ICR-MS and biostatistically evaluated. The characterisation of the non-volatile core breathome identified more than 1100 metabolites including various amino acids, organic and fatty acids and conjugates thereof, carbohydrates as well as diverse hydrophilic and lipophilic nVOCs. The data shows gender-specific differences in metabolic patterns with 570 significant metabolites. Male and female metabolomic profiles of breath were distinguished by a random forest approach with an out-of-bag error of 0.0099. Additionally, the study examines how oral contraceptives and various lifestyle factors, like alcohol consumption, affect the non-volatile breathome. In conclusion, the successful application of a filter-based device combined with metabolomics-analyses delineate a non-volatile breathprint laying the foundation for discovering clinical biomarkers in exhaled breath.


Assuntos
Compostos Orgânicos Voláteis , Humanos , Masculino , Feminino , Compostos Orgânicos Voláteis/análise , Metabolômica/métodos , Expiração , Testes Respiratórios/métodos , Biomarcadores/análise
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124181, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38527410

RESUMO

Distinct diagnosis between Lung cancer (LC) and gastric cancer (GC) according to the same biomarkers (e.g. aldehydes) in exhaled breath based on surface-enhanced Raman spectroscopy (SERS) remains a challenge in current studies. Here, an accurate diagnosis of LC and GC is demonstrated, using artificial intelligence technologies (AI) based on SERS spectrum of exhaled breath in plasmonic metal organic frameworks nanoparticle (PMN) film. In the PMN film with optimal structure parameters, 1780 SERS spectra are collected, in which 940 spectra come from healthy people (n = 49), another 440 come from LC patients (n = 22) and the rest 400 come from GC patients (n = 8). The SERS spectra are trained through artificial neural network (ANN) model with the deep learning (DL) algorithm, and the result exhibits a good identification accuracy of LC and GC with an accuracy over 89 %. Furthermore, combined with information of SERS peaks, the data mining in ANN model is successfully employed to explore the subtle compositional difference in exhaled breath from healthy people (H) and L/GC patients. This work achieves excellent noninvasive diagnosis of multiple cancer diseases in breath analysis and provides a new avenue to explore the feature of disease based on SERS spectrum.


Assuntos
Neoplasias Pulmonares , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/diagnóstico , Inteligência Artificial , Neoplasias Pulmonares/diagnóstico , Análise Espectral Raman , Testes Respiratórios/métodos , Pulmão
11.
Biol Pharm Bull ; 47(4): 856-860, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38538325

RESUMO

The C3 carbon of glucose molecules becomes the C1 carbon of pyruvate molecules during glycolysis, and the C1 and C2 carbons of glucose molecules are metabolized in the tricarboxylic acid (TCA) cycle. Utilizing this position-dependent metabolism of C atoms in glucose molecules, [1-13C], [2-13C], and [3-13C]glucose breath tests are used to evaluate glucose metabolism. However, the effects of chronic ethanol consumption remain incompletely understood. Therefore, we evaluated glucose metabolism in ethanol-fed rats using [1-13C], [2-13C], and [3-13C]glucose breath tests. Ethanol-fed (ERs) and control rats (CRs) (n = 8 each) were used in this study, and ERs were prepared by replacing drinking water with a 16% ethanol solution. We administered 100 mg/kg of [1-13C], [2-13C], or [3-13C]glucose to rats and collected expired air (at 10-min intervals for 180 min). We compared the 13CO2 levels (Δ13CO2, ‰) of breath measured by IR isotope ratio spectrometry and area under the curve (AUC) values of the 13CO2 levels-time curve between ERs and CRs. 13CO2 levels and AUCs after administration of [1-13C]glucose and [2-13C]glucose were lower in ERs than in CRs. Conversely, the AUC for the [3-13C]glucose breath test showed no significant differences between ERs and CRs, although 13CO2 levels during the 110-120 min interval were significantly high in ERs. These findings indicate that chronic ethanol consumption diminishes glucose oxidation without concomitantly reducing glycolysis. Our study demonstrates the utility of 13C-labeled glucose breath tests as noninvasive and repeatable methods for evaluating glucose metabolism in various subjects, including those with alcoholism or diabetes.


Assuntos
Dióxido de Carbono , Glucose , Humanos , Ratos , Animais , Glucose/metabolismo , Dióxido de Carbono/análise , Dióxido de Carbono/metabolismo , Isótopos de Carbono/análise , Testes Respiratórios/métodos , Etanol , Ácido Pirúvico
12.
Infect Dis (Lond) ; 56(5): 376-383, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38424673

RESUMO

BACKGROUND: Nucleic acid amplification tests (NAAT) are considered the gold standard for COVID-19 diagnosis. These tests require professional manpower and equipment, long processing and swab sampling which is unpleasant to the patients. Several volatile organic compounds (VOCs) have been identified in the breath of COVID-19 patients. Detection of these VOCs using a breath test could help rapidly identify COVID-19 patients. OBJECTIVE: Assess the accuracy of 'Breath of Health' (BOH) COVID-19 Fourier-transform infra-red (FTIR) Spectroscopy-based breath test. METHODS: Breath samples from patients with or without symptoms suggestive for COVID-19 who had NAAT results were collected using Tedlar bags and were blindly analysed using BOH FTIR spectroscopy. BOH Measures several VOCs simultaneously and differentiating positive and negative results. BOH results were compared to NAAT results as gold standard. RESULTS: Breath samples from 531 patients were analysed. The sensitivity of BOH breath test was found to be 79.5% and specificity was 87.2%. Positive predictive value (PPV) was 74.7% and negative predictive value (NPV) 90.0%. Calculated accuracy rate was 84.8% and area under the curve 0.834. Subgroup analysis revealed that the NPV of patients without respiratory symptoms was superior over the NPV of symptomatic patients (94.7% vs 80.7%, P-value < 0.0001) and PPV of patients with respiratory symptoms outranks the PPV of individuals without symptoms (85.3% vs 69.2%, P-value 0.0196). CONCLUSION: We found BOH COVID-19 breath test to be a patient-friendly, rapid, non-invasive diagnostic test with high accuracy rate and NPV that could efficiently rule out COVID-19 especially among individuals with low pre-test probability.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , Teste para COVID-19 , Testes Respiratórios/métodos , Análise Espectral , Sensibilidade e Especificidade
13.
Sci Data ; 11(1): 203, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38355591

RESUMO

This study entailed a comprehensive GC‒MS analysis conducted on 121 patient samples to generate a clinical breathomics dataset. Breath molecules, indicative of diverse conditions such as psychological and pathological states and the microbiome, were of particular interest due to their non-invasive nature. The highlighted noninvasive approach for detecting these breath molecules significantly enhances diagnostic and monitoring capacities. This dataset cataloged volatile organic compounds (VOCs) from the breath of individuals with asthma, bronchiectasis, and chronic obstructive pulmonary disease. Uniform and consistent sample collection protocols were strictly adhered to during the accumulation of this extensive dataset, ensuring its reliability. It encapsulates extensive human clinical breath molecule data pertinent to three specific diseases. This consequential clinical breathomics dataset is a crucial resource for researchers and clinicians in identifying and exploring important compounds within the patient's breath, thereby augmenting future diagnostic and therapeutic initiatives.


Assuntos
Asma , Testes Respiratórios , Bronquiectasia , Doença Pulmonar Obstrutiva Crônica , Compostos Orgânicos Voláteis , Humanos , Asma/diagnóstico , Testes Respiratórios/métodos , Expiração , Reprodutibilidade dos Testes , Compostos Orgânicos Voláteis/análise , Cromatografia Gasosa-Espectrometria de Massas , Bronquiectasia/diagnóstico , Doença Pulmonar Obstrutiva Crônica/diagnóstico
14.
J Anal Toxicol ; 48(3): 171-179, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38334750

RESUMO

Exhaled breath (EB) contains various volatile organic compounds (VOCs) that can indicate specific biological or pathological processes in the body. Analytical techniques like gas chromatography-mass spectrometry (GC-MS) can be used to detect and measure these exhaled biomarkers. In this study, the objective was to develop a non-invasive method of EB sampling in animals that were awake, as well as to analyze EB for volatile biomarkers specific for chlorine exposure and/or diagnostic biomarkers for chlorine-induced acute lung injury (ALI). To achieve this, a custom-made sampling device was used to collect EB samples from 19 female Balb/c mice. EB was sampled both pre-exposure (serving as internal control) and 30 min after exposure to chlorine. EB was collected on thermal desorption tubes and subsequently analyzed for VOCs by GC-MS. The following day, the extent of airway injury was assessed in the animals by examining neutrophils in the bronchoalveolar lavage fluid. VOC analysis revealed alterations in the EB biomarker pattern post-chlorine exposure, with eight biomarkers displaying increased levels and six exhibiting decreased levels following exposure. Four chlorinated compounds: trichloromethane, chloroacetone, 1,1-dichloroacetone and dichloroacetonitrile, were increased in chlorine-exposed mice, suggesting their specificity as chlorine EB biomarkers. Furthermore, chlorine-exposed mice displayed a neutrophilic inflammatory response and body weight loss 24 h following exposure. In conclusion, all animals developed an airway inflammation characterized by neutrophil infiltration and a specific EB pattern that could be extracted after chlorine exposure. Monitoring EB samples can readily and non-invasively provide valuable information on biomarkers for diagnosis of chlorine-induced ALI, confirming chlorine exposures.


Assuntos
Cloro , Compostos Orgânicos Voláteis , Feminino , Animais , Camundongos , Cloro/toxicidade , Testes Respiratórios/métodos , Expiração , Cromatografia Gasosa-Espectrometria de Massas/métodos , Biomarcadores/análise , Compostos Orgânicos Voláteis/análise
15.
ACS Sens ; 9(3): 1499-1507, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38382078

RESUMO

The concentration of fractional exhaled nitric oxide (FeNO) is closely related to human respiratory inflammation, and the detection of its concentration plays a key role in aiding diagnosing inflammatory airway diseases. In this paper, we report a gas sensor system based on a distributed parallel self-regulating neural network (DPSRNN) model combined with ultraviolet differential optical absorption spectroscopy for detecting ppb-level FeNO concentrations. The noise signals in the spectrum are eliminated by discrete wavelet transform. The DPSRNN model is then built based on the separated multipeak characteristic absorption structure of the UV absorption spectrum of NO. Furthermore, a distributed parallel network structure is built based on each absorption feature region, which is given self-regulating weights and finally trained by a unified model structure. The final self-regulating weights obtained by the model indicate that each absorption feature region contributes a different weight to the concentration prediction. Compared with the regular convolutional neural network model structure, the proposed model has better performance by considering the effect of separated characteristic absorptions in the spectrum on the concentration and breaking the habit of bringing the spectrum as a whole into the model training in previous related studies. Lab-based results show that the sensor system can stably achieve high-precision detection of NO (2.59-750.66 ppb) with a mean absolute error of 0.17 ppb and a measurement accuracy of 0.84%, which is the best result to date. More interestingly, the proposed sensor system is capable of achieving high-precision online detection of FeNO, as confirmed by the exhaled breath analysis.


Assuntos
Asma , Óxido Nítrico , Humanos , Óxido Nítrico/análise , Asma/diagnóstico , Testes Respiratórios/métodos , Expiração , Inflamação
16.
Sensors (Basel) ; 24(4)2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38400451

RESUMO

Volatile organic compounds (VOCs) in exhaled human breath serve as pivotal biomarkers for disease identification and medical diagnostics. In the context of diabetes mellitus, the noninvasive detection of acetone, a primary biomarker using electronic noses (e-noses), has gained significant attention. However, employing e-noses requires pre-trained algorithms for precise diabetes detection, often requiring a computer with a programming environment to classify newly acquired data. This study focuses on the development of an embedded system integrating Tiny Machine Learning (TinyML) and an e-nose equipped with Metal Oxide Semiconductor (MOS) sensors for real-time diabetes detection. The study encompassed 44 individuals, comprising 22 healthy individuals and 22 diagnosed with various types of diabetes mellitus. Test results highlight the XGBoost Machine Learning algorithm's achievement of 95% detection accuracy. Additionally, the integration of deep learning algorithms, particularly deep neural networks (DNNs) and one-dimensional convolutional neural network (1D-CNN), yielded a detection efficacy of 94.44%. These outcomes underscore the potency of combining e-noses with TinyML in embedded systems, offering a noninvasive approach for diabetes mellitus detection.


Assuntos
Diabetes Mellitus , Compostos Orgânicos Voláteis , Humanos , Nariz Eletrônico , Testes Respiratórios/métodos , Algoritmos , Diabetes Mellitus/diagnóstico , Aprendizado de Máquina , Biomarcadores
17.
Int J Mol Sci ; 25(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38338911

RESUMO

The human body emits a multitude of volatile organic compounds (VOCs) via tissues and various bodily fluids or exhaled breath. These compounds collectively create a distinctive chemical profile, which can potentially be employed to identify changes in human metabolism associated with colorectal cancer (CRC) and, consequently, facilitate the diagnosis of this disease. The main goal of this study was to investigate and characterize the VOCs' chemical patterns associated with the breath of CRC patients and controls and identify potential expiratory markers of this disease. For this purpose, gas chromatography-mass spectrometry was applied. Collectively, 1656 distinct compounds were identified in the breath samples provided by 152 subjects. Twenty-two statistically significant VOCs (p-xylene; hexanal; 2-methyl-1,3-dioxolane; 2,2,4-trimethyl-1,3-pentanediol diisobutyrate; hexadecane; nonane; ethylbenzene; cyclohexanone; diethyl phthalate; 6-methyl-5-hepten-2-one; tetrahydro-2H-pyran-2-one; 2-butanone; benzaldehyde; dodecanal; benzothiazole; tetradecane; 1-dodecanol; 1-benzene; 3-methylcyclopentyl acetate; 1-nonene; toluene) were observed at higher concentrations in the exhaled breath of the CRC group. The elevated levels of these VOCs in CRC patients' breath suggest the potential for these compounds to serve as biomarkers for CRC.


Assuntos
Neoplasias Colorretais , Compostos Orgânicos Voláteis , Humanos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Testes Respiratórios/métodos , Compostos Orgânicos Voláteis/metabolismo , Biomarcadores/análise , Neoplasias Colorretais/diagnóstico
18.
Rapid Commun Mass Spectrom ; 38(8): e9714, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38389333

RESUMO

RATIONALE: Secondary-electrospray ionization (SESI) coupled with high-resolution mass spectrometry is a powerful tool for the discovery of biomarkers in exhaled breath. A primary electrospray consisting of aqueous formic acid (FA) is currently used to charge the volatile organic compounds in breath. To investigate whether alternate electrospray compositions could enable different metabolite coverage and sensitivities, the electrospray dopants NaI and AgNO3 were tested. METHODS: In a proof-of-principle manner, the exhaled breath of one subject was analyzed repeatedly with different electrospray solutions and with the help of a spectral stitching technique. Capillary diameter and position were optimized to achieve proper detection of exhaled breath. The detected features were then compared using formula annotation. Using an evaporation-based gas standard system, the signal response of the different solutions was probed. RESULTS: Principal component analysis revealed a substantial difference in features detected with AgNO3 . With silver, more sulfur-containing features and more unsaturated hydrocarbon compounds were detected. Furthermore, more primary amines were potentially ionized, as indicated by van Krewelen diagrams. In total, twice as many features were unique to AgNO3 than for other electrospray dopants. Using gas standards at known concentrations, the high sensitivity of FA as a dopant was demonstrated but also indicated alternate sensitivities of the other electrospray solutions. CONCLUSIONS: This work demonstrated the potential of AgNO3 as a complementary dopant for further biomarker discovery in SESI-based breath analysis.


Assuntos
Metabolômica , Espectrometria de Massas por Ionização por Electrospray , Espectrometria de Massas por Ionização por Electrospray/métodos , Metabolômica/métodos , Testes Respiratórios/métodos , Expiração , Eletrólitos
19.
Pediatr Pulmonol ; 59(4): 915-922, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38179886

RESUMO

BACKGROUND: The introduction of modulator therapy for cystic fibrosis (CF) has led to an increased interest in the detection of small airway disease (SAD) as sensitive marker of treatment response. The particles in exhaled air (PExA) method, which records exhaled particle mass (PEx ng/L) and number (PExNR), detects SAD in adult patients. Our primary aim was to investigate if PExA outcomes in children with CF are different when compared to controls and associated with more severe disease. Secondary aims were to assess feasibility and repeatability of PExA in children with CF and to correlate PExA to multiple breath nitrogen washout (MBNW) as an established marker of SAD. METHODS: Thirteen healthy children (HC), 17 children with CF with normal lung function (CF-N) (FEV1 z-score ≥ -1.64) and six with airway obstruction (CF-AO) (FEV1 z-score < -1.64) between 8 and 18 years performed MBNW followed by PExA and spirometry. Children with CF repeated the measurements after 3 months. RESULTS: PEx ng/L and PExNR/L per liter of exhaled breath were similar between the three groups. The lung clearance index (LCI) was significantly higher in both CF-N and CF-AO compared to HC. All participants, except one, were able to perform PExA. Coefficient of variation for PEx ng/l was (median) 0.38, range 0-1.25 and PExNR/l 0.38, 0-1.09. Correlation between LCI and PEx ng/l was low, rs 0.32 (p = .07). CONCLUSION: PExA is feasible in children. In contrast to LCI, PExA did not differentiate healthy children from children with CF suggesting it to be a less sensitive tool to detect SAD.


Assuntos
Asma , Fibrose Cística , Criança , Adulto , Humanos , Testes de Função Respiratória/métodos , Espirometria/métodos , Expiração , Nitrogênio , Testes Respiratórios/métodos , Pulmão
20.
J Breath Res ; 18(2)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38198707

RESUMO

The direct analysis of molecules contained within human breath has had significant implications for clinical and diagnostic applications in recent decades. However, attempts to compare one study to another or to reproduce previous work are hampered by: variability between sampling methodologies, human phenotypic variability, complex interactions between compounds within breath, and confounding signals from comorbidities. Towards this end, we have endeavored to create an averaged healthy human 'profile' against which follow-on studies might be compared. Through the use of direct secondary electrospray ionization combined with a high-resolution mass spectrometry and in-house bioinformatics pipeline, we seek to curate an average healthy human profile for breath and use this model to distinguish differences inter- and intra-day for human volunteers. Breath samples were significantly different in PERMANOVA analysis and ANOSIM analysis based on Time of Day, Participant ID, Date of Sample, Sex of Participant, and Age of Participant (p< 0.001). Optimal binning analysis identify strong associations between specific features and variables. These include 227 breath features identified as unique identifiers for 28 of the 31 participants. Four signals were identified to be strongly associated with female participants and one with male participants. A total of 37 signals were identified to be strongly associated with the time-of-day samples were taken. Threshold indicator taxa analysis indicated a shift in significant breath features across the age gradient of participants with peak disruption of breath metabolites occurring at around age 32. Forty-eight features were identified after filtering from which a healthy human breath profile for all participants was created.


Assuntos
Testes Respiratórios , Espectrometria de Massas por Ionização por Electrospray , Humanos , Masculino , Feminino , Adulto , Espectrometria de Massas por Ionização por Electrospray/métodos , Testes Respiratórios/métodos , Expiração , Biologia Computacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...